A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

A New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks

The uniaxial compressive strength of weak rocks (UCSWR) is among the essential parameters involved for the design of underground excavations, surface and underground mines, foundations in/on rock masses, and oil wells as an input factor of some analytical and empirical methods such as RMR and RMI. The direct standard approaches are difficult, expensive, and time-consuming, especially with highl...

متن کامل

Robust Globally Divergence-free Weak Galerkin Methods for Stokes Equations

This paper proposes and analyzes a class of robust globally divergence-free weak Galerkin (WG) finite element methods for Stokes equations. The new methods use the Pk/Pk−1 (k ≥ 1) discontinuous finite element combination for velocity and pressure in the interior of elements, and piecewise Pl/Pk (l = k − 1, k) for the trace approximations of the velocity and pressure on the inter-element boundar...

متن کامل

Weak Galerkin Finite Element Method for Second Order Parabolic Equations

We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...

متن کامل

Superdevelopments for Weak Reduction

We study superdevelopments in the weak lambda calculus of Çaǧman and Hindley, a confluent variant of the standard weak lambda calculus in which reduction below lambdas is forbidden. In contrast to developments, a superdevelopment from a term M allows not only residuals of redexes in M to be reduced but also some newly created ones. In the lambda calculus there are three ways new redexes may be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Continuous Dynamical Systems - B

سال: 2021

ISSN: 1553-524X

DOI: 10.3934/dcdsb.2020277